Global well-posedness and scattering for the mass-critical Hartree equation with radial data
نویسندگان
چکیده
We establish global well-posedness and scattering for solutions to the masscritical nonlinear Hartree equation iut +∆u = ±(|x|−2 ∗ |u|2)u for large spherically symmetric L2x(R ) initial data; in the focusing case we require, of course, that the mass is strictly less than that of the ground state.
منابع مشابه
Global well-posedness and scattering for the energy-critical, defocusing Hartree equation for radial data
We consider the defocusing, ˙ H 1-critical Hartree equation for the radial data in all dimensions (n ≥ 5). We show the global well-posedness and scattering results in the energy space. The new ingredient in this paper is that we first take advantage of the term − I |x|≤A|I| 1/2 |u| 2 ∆ 1 |x| dxdt in the localized Morawetz identity to rule out the possibility of energy concentration, instead of ...
متن کاملGlobal well-posedness, scattering and blow-up for the energy-critical, focusing Hartree equation in the radial case
We establish global existence, scattering for radial solutions to the energy-critical focusing Hartree equation with energy and Ḣ norm less than those of the ground state in R× R, d ≥ 5.
متن کاملGlobal well-posedness and scattering for the energy-critical, defocusing Hartree equation in R
We obtain global well-posedness, scattering, uniform regularity, and global L t L 6n 3n−8 x spacetime bounds for energy-space solutions to the defocusing energycritical nonlinear Hartree equation in R× R, n ≥ 5.
متن کاملGlobal Well-posedness and Scattering for the Mass-critical Nonlinear Schrödinger Equation for Radial Data in High Dimensions
We establish global well-posedness and scattering for solutions to the defocusing mass-critical (pseudoconformal) nonlinear Schrödinger equation iut + ∆u = |u|4/nu for large spherically symmetric Lx(R n) initial data in dimensions n ≥ 3. After using the reductions in [32] to reduce to eliminating blowup solutions which are almost periodic modulo scaling, we obtain a frequency-localized Morawetz...
متن کاملThe Cauchy problem for the L-critical focusing Hartree equation in three dimensions
For the defocusing, energy subcritical case, J. Ginibre and G. Velo [8] proved the global well-posedness and scattering results in the energy space. Later, K. Nakanishi [25] made use of a new Morawetz estimate to obtain the similar results for the more general functions V (x). Recently, the authors proved the global wellposedness and scattering for the defocusing, energy critical Hartree equati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008